Antisymmetry and the 2x2x2 Cube
Someone on the Yahoo forum asked about how to do a 2x2x2 God's algorithm calculation and mentioned the "1152-fold" symmetry for the 2x2x2. I got to looking at some of the messages in the Cube-Lovers archives that Jerry Bryan had made about B-conjugation and the 1152-fold symmetry of the 2x2x2. He found that there were 77802 equivalence classes for the 2x2x2.
I have used antisymmetry to further reduce the number of equivalence classes for the 2x2x2 to 40296. The following table shows the class sizes of these equivalence classes.
class size class size/24 count ---------- ------------- ----- 24 1 1 48 2 1 72 3 3 96 4 1 144 6 14 192 8 11 288 12 49 384 16 22 576 24 337 768 32 6 1152 48 3353 2304 96 36498 ----- total 40296
I then performed God's algorithm calculations (HTM and QTM) to find the number of equivalence classes at each distance from the solved 2x2x2 cube. The results are given below. Because the 2x2x2 has no centers that provide a reference for the positions of the other cubies, the number of positions of the corners for the 2x2x2 (the only cubies it has) can be considered to be 1/24 the number of positions of the corners of the 3x3x3 (3674160 instead of 88179840). So in the tables below, I use the factor-of-24 reduced numbers for simplicity. The tables further break down the positions with respect to different class sizes.
Half-turn metric ================ 1/24 distance class size classes positions -------- ---------- ----------- --------------- 0 1 1 1 0 all 1 1 1 3 1 3 1 6 1 6 1 all 2 9 2 6 1 6 2 12 2 24 2 24 1 24 2 all 4 54 3 3 1 3 3 6 1 6 3 12 4 48 3 24 5 120 3 48 3 144 3 all 14 321 4 2 1 2 4 3 1 3 4 6 3 18 4 12 2 24 4 24 5 120 4 48 23 1104 4 96 6 576 4 all 41 1847 5 6 4 24 5 8 1 8 5 12 4 48 5 24 15 360 5 48 67 3216 5 96 66 6336 5 all 157 9992 6 6 2 12 6 12 5 60 6 24 22 528 6 48 134 6432 6 96 449 43104 6 all 612 50136 7 4 1 4 7 6 2 12 7 12 12 144 7 24 58 1392 7 48 298 14304 7 96 2205 211680 7 all 2576 227536 8 8 1 8 8 12 6 72 8 16 2 32 8 24 59 1416 8 32 1 32 8 48 588 28224 8 96 8753 840288 8 all 9410 870072 9 8 3 24 9 12 7 84 9 16 6 96 9 24 91 2184 9 32 2 64 9 48 1325 63600 9 96 18976 1821696 9 all 20410 1887748 10 8 5 40 10 12 4 48 10 16 12 192 10 24 74 1776 10 32 3 96 10 48 879 42192 10 96 6036 579456 10 all 7013 623800 11 8 1 8 11 12 3 36 11 16 2 32 11 24 7 168 11 48 36 1728 11 96 7 672 11 all 56 2644 ----- ------- 40296 3674160 Quarter-turn metric =================== 1/24 distance class size classes positions -------- ---------- ----------- --------------- 0 1 1 1 0 all 1 1 1 6 1 6 1 all 1 6 2 3 1 3 2 12 2 24 2 all 3 27 3 24 3 72 3 48 1 48 3 all 4 120 4 6 1 6 4 12 4 48 4 48 6 288 4 96 2 192 4 all 13 534 5 24 4 96 5 48 17 816 5 96 14 1344 5 all 35 2256 6 3 1 3 6 6 3 18 6 8 1 8 6 12 3 36 6 24 9 216 6 48 37 1776 6 96 72 6912 6 all 126 8969 7 4 1 4 7 6 1 6 7 12 2 24 7 24 16 384 7 48 76 3648 7 96 302 28992 7 all 398 33058 8 2 1 2 8 3 1 3 8 6 4 24 8 12 4 48 8 24 25 600 8 48 168 8064 8 96 1098 105408 8 all 1301 114149 9 12 3 36 9 16 1 16 9 24 35 840 9 48 334 16032 9 96 3579 343584 9 all 3952 360508 10 6 2 12 10 8 3 24 10 12 10 120 10 24 68 1632 10 48 656 31488 10 96 9347 897312 10 all 10086 930588 11 8 1 8 11 12 5 60 11 16 2 32 11 24 76 1824 11 32 4 128 11 48 1040 49920 11 96 13530 1298880 11 all 14658 1350852 12 6 2 12 12 8 2 16 12 12 11 132 12 16 15 240 12 24 73 1752 12 48 774 37152 12 96 7742 743232 12 all 8619 782536 13 8 3 24 13 12 4 48 13 16 3 48 13 24 26 624 13 32 2 64 13 48 242 11616 13 96 811 77856 13 all 1091 90280 14 8 1 8 14 12 1 12 14 16 1 16 14 24 2 48 14 48 2 96 14 96 1 96 14 all 8 276 ----- ------- 40296 3674160